sebuah mobil melaju dengan kecepatan

Sebuahtikungan memiliki radius 465 ft, dengan kecepatan kendaraan yang diijinkan adalah 61,5% dari kecepatan rencana. Jika diinginkan kecepatan kendaraan dapat melaju lebih Tentukan jumlah tenaga yang dibutuhkan oleh sebuah mobil penumpang yang melaju pada jalan yang lurus dengan tanjakan 5% jika diketahui berat kendaraaan 4000 lb dan 7Sebuah mobil bergerak dengan kecepatan 72 km/jam. Pada jarak 18 km dari arah yang berlawanan, sebuah mobil bergerak dengan kecepatan 90 km/jam. Maka waktu yang diperlukan kedua mobil tersebut untuk berpapasan adalah. A. 200 s B. 300 s C. 400 s D. 450 s E. 500 s C 20 8 1. Sebuah mobil melaju dengan kecepatan 40km/jam sepanjang 200 km. Sebuah A Kelajuan dan Kecepatan Dalam kehidupan sehari-hari, kata kecepatan dan kelajuan sering disamaartikan. Kecepatan dan kelajuan merupakan dua pegertian yang berbeda. Kecepatan (velocity) merupakan besaran vektor, yaitu besaran yang memperhitungkan arah geraknya, sedangkan kelajuan (speed) merupakan besaran skalar, yaitu besaran yang hanya memiliki besar tanpa memperhatikan arah gerak benda. BacaJuga: Mobil Ferrari Indra Kenz Disita Bareskrim Polri, Parkir Bersebelahan dengan Mobil Doni Salmanan. Sementara itu, kondisi mobil tertimpa beton rumah. Tidak ada korban jiwa akibat kecelakaan ini, tetapi kerugian yang dialami pemilik rumah mencapai puluhan juta rupiah. Sementara itu, sang sopir masih diperiksa. D gerak miring dengan kecepatan tetap. 54. Sebuah mobil bergerak dengan kecepatan 15 m/s kemudian direm sehingga mendapat perlambatan 2 m/s². Berapa lama waktu yang dibutuhkan mobil tersebut untuk berhenti . A. 6,5 s B. 7,5 s C. 13 s D. 30 s. 55. Sebuah mobil bergerak 30 km ke arah timur kemudian berbalik arah ke barat sejauh 90km. Meine Stadt De Partnersuche Kostenlos. Mari, kita bahas 10 soal impuls dan momentum bagian 1 pilihan ganda. Materi ini terdiri dari sub bab momentum linier, impuls, perubahan momentum, dan energi kinetik. Berikut pembahasannya Baca sebelumnya 10 Soal & Pembahasan Usaha dan Energi bagian 1 ǀ Pilihan Ganda Pilihlah jawaban yang tepat dari pilihan di bawah ini. 1. Sebuah mobil bermassa 400 kg melaju dengan kecepatan 30 m/s ke arah selatan. Momentum yang dimiliki mobil tersebut adalah . . . A. 1,2 B. 12 C. 120 D. 1200 E. 12000 Pembahasan Diketahui m = 400 kg v = 30 m/s Ditanya momentum p p = = = 12000 Jawaban E 2. Perhatikan gambar berikut!Benda yang memiliki momentum paling besar adalah . . . A. Benda A B. Benda B C. Benda C D. Benda D E. Benda E Pembahasan *Gambar A, p = = = 20 *Gambar B, p = = = 40 *Gambar C, p = = = 20 *Gambar D, p = = = 10 *Gambar E, p = = = 20 Jawaban B 3. Benda A bermassa m bergerak dengan kecepatan v dan memiliki momentum p. Benda B bermassa 4m bergerak dengan kecepatan 0,5v. Momentum benda B adalah . . . A. 0,2p B. p C. 2p D. 4p E. 8p Pembahasan *Momentum benda A, pA = mv *Momentum benda B, pB = pB = 2mv pB = 2pA Jawaban C 4. Dua benda memiliki momentum yang sama besar. Benda C bermassa m bergerak dengan kelajuan 2v. Jika benda B bermassa 4m, maka kelajuan benda B adalah . . . A. 0,25v B. 0,5v C. v D. 2v E. 4v Pembahasan pC = pB = v2 = 2v/ 4 v2 = 0,5 v Jawaban B 5. Balok bermassa 100 g bergerak ke kanan dengan kecepatan 2 m/s. Jika kecepatannya diubah menjadi 4 m/s dan arah tetap, maka perubahan momentum balok tersebut adalah . . . A. 0,2 B. 0,4 C. 0,6 D. 200 E. 400 Pembahasan Diketahui m = 100 g = 0,1 kg vi = + 2 m/s vf = + 4 m/s Ditanya perubahan momentum Δp Δp = pf – pi Δp = mvf – vi Δp = 0,14 – 2 Δp = 0,12 = 0,2 Jawaban A 6. Mobil mainan memiliki massa 500 g. Ia bergerak ke Utara dengan kecepatan 3 m/s. Kemudian, ia berbelok ke Barat dengan kecepatan 4 m/s. Besar perubahan momentum dari mobil mainan adalah . . . A. 1,5 B. 2,0 C. 2,5 D. 3,0 E. 4,0 Pembahasan Diketahui m = 500 g = 0,5 kg vi = + 3 m/s ke utara vf = + 4 m/s ke barat Ditanya perubahan momentum Δp pi = = 0,53 = 1,5 pf = = 0,54 = 2,0 Karena vektor membentuk sudut, kita perlu menggunakan persamaan pengurangan vektor Δp = pf – pi Δp = √pf2 + pi2 – Δp = √1,52 + 2,02 – 21,52,0.cos90o Δp = √1,52 + 2,02 – 0 Δp = √2,25 + 4 Δp = √6,25 Δp = 2,5 Jawaban C 7. Perhatikan gambar di bawah ini!Partikel bermassa 0,1 g bergerak dengan kecepatan 20 m/s, kemudian menumbuk dinding secara lenting sempurna dan berbalik arah dengan kecepatan sama. Besar impuls partikel tersebut adalah . . . A. 2 x 10-3 Ns B. – 2 x 10-3 Ns C. 4 x 10-3 Ns D. – 4 x 10-3 Ns E. 8 x 10-3 Ns Pembahasan Diketahui m1 = m2 = 0,1 g = 0,0001 v1 = +20 m/s v2 = – 20 m/s Ditanya impuls I = Δp I = Δp I = p2 – p1 I = mv2 – v1 I = 0,0001– 20 – 20 I = 0,0001– 40 I = – 0,004 Ns = – 4 x 10-3 Ns Jawaban D 8. Bola baseball bermassa 50 g melayang di udara dengan kecepatan 5 m/s. Kemudian, ia dipukul hingga berbalik arah dengan kecepatan 10 m/s/ Jika selang waktu sentuh antara alat pemukul dan bola adalah 0,01 s, maka gaya yang telah diberikan pemain baseball adalah . . . A. 45 N B. 55 N C. 65 N D. 75 N E. 85 N Pembahasan Diketahui m = 50 g = 0,05 kg vi = + 5 m/s vf = – 10 m/s t = 0,01 s Ditanya gaya F Δp = pf – pi I = mvf – vi = mvf – vi F = mvf – vi/ t F = 0,055 – –10/ 0,01 F = 0,0515/ 0,01 F = 75 N Jawaban D 9. Benda A dan B memiliki energi kinetik yang sama besar. Momentum kedua benda tersebut adalah . . . A. Momentum benda A sama dengan momentum benda B B. Momentum benda A kurang dari momentum benda B C. Momentum benda A lebih dari momentum benda B D. Momentum benda A dan benda B tidak dapat ditentukan karena tidak ada informasi massa benda E. Momentum benda A dan benda B tidak dapat ditentukan karena tidak ada informasi kecepatan benda Pembahasan Penjabaran dijelaskan pada pembahasan nomor 10. Energi kinetik akan sama besar, maka momentum keduanya akan berbeda. Momentum lebih besar akan dimiliki benda yang bermassa lebih besar dan momentum lebih kecil akan dimiliki benda yang bermassa lebih kecil. Jawaban D 10. Dua benda dalam keadaan diam. Benda 1 memiliki massa lebih besar dibanding massa 2. Kemudian, gaya sebesar F yang sama diberikan pada benda 1 dan 2, sehingga benda bergerak dipercepat hingga menempuh jarak L walau percepatan keduanya berbeda. Pernyataan berikut yang benar adalah . . . A. p1 > p2 B. p1 = p2 C. p1 K2 E. K1 m2 F1 = F2 = F Δx = L1 = L2 = L vi = 0 kecepatan awal Misal, m1 = 2m dan m2 = 1m Ditanya momentum p dan energi kinetik K *Percepatan benda 1 F1 = F2 = a1 = m1 a1 = 2m a1 = 1/2a2 *Kecepatan akhir benda 1 vf1 vf12 = vi2 + vf12 = 0 + vf12 = 0 + 21/2 vf12 = vf1 = √ *Kecepatan akhir benda 2 vf2 vf22 = vi2 + vf22 = 0 + vf22 = vf2 = √ *Momentum benda 1 p1 p1 = p1 = p1 = 2m√ p1 = m√ *Momentum benda 2 p2 p2 = p2 = p2 = m√ Jadi, momentum p1 > p2 *Energi kinetik benda 1 Ek1 = K1 Ek1 = 1/2 Ek1 = 1/2 Ek1 = 1/22m√ Ek1 = *Energi kinetik benda 2 Ek2 = K2 Ek2 = 1/2 Ek2 = 1/2 Ek2 = 1/2m√ Ek2 = 1/2 Ek2 = Jadi, energi kinetik K1 = K2 Jawaban A Baca selanjutnya 10 Soal & Pembahasan Impuls dan Momentum bagian 2 ǀ Pilihan Ganda Wala, kita sudah selesaikan 10 soal dan pembahasan impuls dan momentum bagian 1. Sekarang, kita lanjut ke bagian 2. N. AtiqahMahasiswa/Alumni Institut Teknologi Bandung23 Desember 2021 0918Jawaban terverifikasiHallo Mila, kakak bantu jawab ya Jawaban nya adalah 10 m/s. Pembahasan Kecepatan adalah jarak yang ditempuh dalam waktu tertentu, satuan Internasional dari kecepatan adalah m/s. Pada soal ini, kecepatan dalam satuan km/jam akan kita konversikan ke dalam m/s. 1 km/ jam = 1 x 1000 m / 3600 s sehingga 36 km/jam = 36 x 1000 m / 3600 s = 36000 m/ 3600 s = 10 m/s Jadi, 36 km/ jam jika dikonversikan akan sama dengan 10 m/s AMHalo M N, kakak bantu jawab yaa Jawabannya 300 km Konsep - J = K × W Keterangan K = Kecepatan J = Jarak W = Waktu Diketahui - K = 60 km/jam - W = 5 jam Sehingga diperoleh Jarak kota A dan B = K × W = 60 km/jam × 5 jam = 60 × 5 = 300 km Jadi, jarak kota A dan B adalah 300 km. Semoga jawaban di atas dapat membantu beri rating untuk berterima kasih pada penjawab soal!GM60×5=300 jaraknya adalah 300 KMYuk, beri rating untuk berterima kasih pada penjawab soal!Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan! Sebenarnya dalam kehidupan kita sehari-hari kita melakukan percepatan tanpa kita sadari contoh nya saja saat kalian berangkat kerja, lalu kalian menaiki alat transportasi lalu kalian tentu nya akan berjalan dengan kecepatan yang tertentu. Kenapa begitu karna kalian tanpa sadar kadang berjalan lambat, lalu cepat dan kadang melambat dan cepat lagi tanpa sadar sebenarnya kita telah melakukan percepatan di dalam kehidupan sehari-hari kita. Pengertian Percepatan Pengertian dari percepatan atau acceleration yaitu sebuah perubahan kecepatan suatu benda yang sebelum nya lambat hingga menjadi cepat dan di tempuh dalam tiap satuan waktu. Percepatan sendiri yaitu besaran dari vektor yang memiliki suatu nilai dan arah. Dan untuk cara menuliskan percepatan dalam hukum fisika yaitu di simbol kan dengan huruf a Untuk percepatan sendiri terbagi menjadi 2 jenis yaitu percepatan rata – rata dan percepatan sesaat, nanti kita akan bahas kedua percepatan ini dibagian akhir materi. Secara umum untuk menentukan rumus percepatan suatu benda yang bergerak kalian semua bisa melihat rumus percepatan di bawah ini Keterangan a = percepatan rata – rata m/s2 Δv = perubahan kecepatan m/s Δt = selang waktu s V1 = waktu awal m/s V2 = kecepatan akhir m/s t1 = waktu awal s t2 = waktu akhir s Tapi perlu kalian ingat yaitu percepatan dapat bernilai positif dan juga dapat bernilai negatif. Kenapa di katakan seperti itu karna nilai percepatan yang positif pasti kecepatan benda nya bertambah setiap waktu nya, maksud nya benda yang mengalami percepatan saja. Sedangkan percepatan yang bernilai negatif terjadi karna kecepatan benda nya bernilai negatif terhadap waktu, kalian jangan bingung maksud dari benda yang bernilai negatif adalah benda yang mengalami perlambatan. Macam Macam Percepatan Rumus Percepatan Rata – Rata Secara sistematis untuk rumus percepatan rata rata dapat dilihat dibawah ini Keterangan a = percepatan rata – rata m/s2 Δv = perubahan kecepatan m/s Δt = selang waktu s Rumus Percepatan Sesaat Untuk menghitung percepatan sesaat percepatan a gerak suatu benda harus memiliki waktu yang begitu singkat, yaitu nilai selang waktu Δt nya harus mendekati angka nol. Secara matematis, rumus percepatan sesaat dapat di tulis seperti ini Keterangan a = percepatan rata – rata m/s2 Δv = perubahan kecepatan m/s Δt = selang waktu s Contoh Soal Percepatan dan Pembahasannya Contoh Soal 1 Diketahui sebuah mobil melaju dengan kecepatan awal yaitu 2 m/s. Setelah mobil melaju 10 sekon, kecepatan mobil tersebut bertambah menjadi 4 m/s. Berapa percepatan yang dimiliki oleh mobil tersebut ? Pembahasan / Jawaban Diketahui v1 = 2 m/s v2 = 4 m/s t1 = 0 sekon t2 = 4 sekon Penyelesaian Contoh Soal 2 Seoarang pelajar mengendarai sebuah sepeda dengan kecepatan yaitu 7,2 km/jam. Pada saat menanjak, kecepatan sepeda tersebut sebesar 0,5 m/s² selama 4 sekon. Berapakah percepatan akhir pelajar tersebut? Pembahasan / Jawaban Diketahui v1 = 7,2 km/jam = 7,2 m/s = 2 m/s a = − 0,5 m/s² tanda negatif yaitu perlambatan t = 4 s Ditanya v2 … ? Penyelesaian a = v2 – v1/t v2 = v1 + at v2 = 4 + − 0,5 × 2 v2 = 3 m/s v2 = 10,8 km/jam Contoh Soal 3 Fitra Seorang pengendara motor dan ia berhenti dari kecepatan 22,5 m/s setelah 2 sekon menekan rem motornya. Tentukan berapa perlambatannya ? Pembahasan / Jawaban Diketahui vt = 0 m/s v = 22,5 m/s tt = 2 s t = 0 s Penyelesaian a = 0 – 22,5 / 2 = – 11,25 meter/sekon² Contoh Soal 4 Sebuah Motor awalnya bergerak dengan kecepatan yaitu 10 m/s kemudian di depannya ada seekor sapi lewat dan akhirnya motor tersebut bergerak dengan kecepatan yakni 2 m/s dalam waktu 4 detik. Hitunglah perlambatan dari motor tersebut ? Pembahasan / Jawaban Diketahui v = 10 m/s vt = 2 m/s t = 4 sekon Ditanya a = …? Penyelesaian a = 2 – 10 / 4 a = – 8 / 10 = – 0,8 m/s2 Contoh Soal 5 Risti mengendarai mobil dengan kecepatan 72 km/jam kemudian saat melintasi lampu lalu lintas dan berhenti dalam waktu 5 sekon. Hitunglah perlambatan yang dialami mobil risti ? Pembahasan / Jawaban Diketahui v = 72 km/jam = 20 m/s vt = 0 m/s Nilainya nol? Karena mobil risti berhenti artinya diam, Maka benda diam mempunyai kecepatannya nol 0 t = 10 sekon Ditanya a = …? Penyelesaian a = 0 – 20 / 5 a = – 20 / 5 a = – 4 m/s² Nah seperti itulah tadi rumus tentang percepatan pada sebuah benda semoga apa yang telah kami tulis ini bisa bermanfaat dan berguna bagi kalian semua dan setelah kalian membaca artikel ini kami harap kalian bisa lebih giat lagi belajar dan berlatih soal soal percepatan yang lain. Baca juga Rumus Cahaya Rumus Medan Listrik Halo adik-adik, kali ini kakak akan menjelaskan satu rumus penting dalam gerak, yaitu rumus percepatan beserta cara menggunakannya ke dalam soal. Mengapa penting? Sebab, rumus ini kerap digunakan setiap kita melakukan perhitungan tentang gerak benda. Secara spesifik, materi percepatan akan kita temui dalam materi bab gerak benda, khususnya gerak lurus berubah beraturan GLBB. Ketika membaca materi ini, kakak anggap materi fisika kalian di sekolah telah sampai di bab tersebut. Namun, kalian tenang aja, rumus ini tidak sulit kok. Kakak yakin setelah mempelajari materi ini, kalian pasti bisa menerapkannya ke dalam soal. Baiklah, kakak mulai saja materinya... Pengertian Percepatan Apa sih percepatan itu? Disadari atau tidak, sebenarnya dalam kehidupan sehari-hari kita sangat akrab dengan percepatan. Misalnya, ketika kalian berjalan, ada kalanya berjalan pelan, tetapi pada saat tertentu berjalan cepat. Perubahan berjalan dari pelan ke cepat itu menandakan bahwa kalian sedang melakukan percepatan. Begitupun pada saat kalian berkendara, ada kalanya kendaraan yang kalian tumpangi melaju pelan, namun pada saat tertentu melaju cepat. Artinya, kendaraan yang kalian tumpangi juga sedang melakukan percepatan. Gimana adik-adik? Dari ilustrasi di atas, udah dapat gambaran mengenai apa itu percepatan? Yah benar, jadi Percepatan acceleration adalah perubahan kecepatan dalam selang waktu tertentu1 Berdasarkan definisi di atas, maka benda yang mengalami perubahan kecepatan berarti sedang melakukan percepatan. Perubahan kecepatan itu bisa bertambah cepat atau bertambah lambat. Jika bertambah cepat artinya percepatannya positif, namun jika bertambah lambat artinya percepatannya negatif. Percepatan negatif disebut juga dengan perlambatan. Percepatan positif adalah percepatan yang searah dengan gerak benda. Sedangkan, percepatan negatif adalah percepatan yang berlawanan arah dengan benda. Beberapa contoh percepatan positif dalam kehidupan sehari-hari Gerak buah mangga yang jatuh dari pohonnya akan semakin cepat sebelum menyentuh tanah. Gerak sepeda motor yang melaju pada jalan menurun. Gerak mobil yang akan bertambah cepat ketika pedal gas diinjak. Berikut ini adalah beberapa contoh percepatan negatif perlambatan dalam kehidupan sehari-hari Gerak bola yang dilempar ke atas, maka gerakannya akan bertambah lambat sebelum mencapai puncak. Gerak mobil yang melaju pelan sampai berhenti ketika pedal rem diinjak. Gerak sepeda yang dikayuh di jalan menanjak Dalam fisika, percepatan disimbolkan dengan a, dengan satuan m/s2. Percepatan merupakan besaran turunan karenan tersusun dari beberapa besaran pokok. Selain itu, percepatan juga termasuk ke dalam besaran vektor sehingga untuk menyatakannya harus dengan angka dan arah. Rumus Umum Percepatan Secara umum, rumus percepatan sering ditulis dengan persamaana = Δ v / Δ t = v2 - v1 / t2 - t1 Keterangan a = percepatan benda m/s2 Δv = perubahan kecepatan m/s Δt = selang waktu s v2 = kecepatan akhir m/s v1 = kecepatan awal m/s t2 = waktu akhir s t1 = waktu awal s Coba perhatikan rumus di atas, ada simbol yang dicetak tebal bold, ada yang tidak. Mengapa begitu? Jadi, simbol yang dicetak tebal menandakan bahwa simbol itu adalah besaran vektor. Percepatan menghubungkan 2 besaran, yaitu kecepatan dan waktu. Jika dituliskan dalam grafik, maka bentuknya sebagai berikut Jenis-Jenis Percepatan Di dalam gerak lurus, terdapat dua jenis percepatan, yaitu percepatan rata-rata dan percepatan sesaat. Pembagian jenis percepatan ini untuk menghadapi fakta bahwa sangat sulit menemukan sebuah benda dalam kehidupan sehari-hari yang bergerak dengan percepatan tetap konstan. Kebanyakan benda bergerak dengan percepatan berubah-ubah, sehingga terdapat kesulitan tersendiri untuk menghitung nilai percepatan secara tepat. Untuk memudahkan perhitungan, konsep gerak membagi percepatan tersebut menjadi percepatan rata-rata dan percepatan sesaat. 1. Percepatan Rata-rata Average Acceleration Percepatan rata-rata average acceleration didefinisikan sebagai perubahan kecepatan dalam selang waktu tertentu. Artinya, dalam selang waktu tertentu percepatan gerak dapat berubah-ubah. Adapun percepatan rata-rata dapat mewakili nilai percepatan selama selang waktu tersebut. Rumus Percepatan Rata-rata Secara matematis, percepatan rata-rata dirumuskan dengan persamaan a = Δ v / Δ t = v2 - v1 / t2 - t1 Keterangan a = percepatan rata-rata m/s2 Δv = perubahan kecepatan m/s, dibaca "delta v" Δt = selang waktu s, dibaca "delta t" v2 = kecepatan akhir m/s v1 = kecepatan awal m/s t2 = waktu akhir s t1 = waktu awal s Catatan Jika di soal hanya disebutkan "percepatan" saja, maka yang dimaksud adalah "percepatan rata-rata". 2. Percepatan Sesaat Instantaneous Acceleration Percepatan sesaat instantaneous acceleration adalah percepatan rata-rata dengan selang waktu yang sangat kecil mendekati nol. Dalam bahasa yang lain, percepatan sesaat adalah limit dari percepatan rata-rata pada saat selang waktu mendekati nol. Percepatan sesaat sama dengan laju perubahan sesaat dari kecepatan terhadap waktu. Rumus Percepatan Sesaat Berdasarkan definisi di atas, maka rumus percepatan sesaat dituliskan dengan bentuk persamaan Keterangan a = percepatan sesaat m/s2 Δv = perubahan kecepatan m/s Δt = selang waktu s Cara Menggunakan Rumus Percepatan Sebenarnya, tidak sulit untuk menerapkan rumus percepatan ini ke dalam perhitungan. Kalian hanya perlu memasukkan nilai-nilai sesuai dengan simbol yang tertera pada rumus. Setelah itu, maka operasi perhitungan bisa langsung dilakukan. Jadi, langkah-langkah yang harus kalian lakukan untuk menggunakan rumus ini adalah sebagai berikut 1. Identifikasi Besaran Kecepatan Pada rumus percepatan a, terdapat simbol perubahan kecepatan Δv. Ingat, jika terdapat simbol delta Δ, maka itu artinya terdapat dua besaran yang saling diperkurangkan, dalam hal ini Δv berarti v2 - v1. Oleh karena itu, ada dua nilai kecepatan yang harus kalian cari, yaitu kecepatan 1 v1 dan kecepatan 2 v2. Di dalam rumus, nilai kecepatan 2 akan diperkurangkan dengan nilai kecepatan 1. 2. Identifikasi Besaran Waktu Langkah selanjutnya adalah kalian harus menemukan besaran selang waktu Δt. Sama dengan penjelasan di atas, ada 2 nilai besaran waktu yang harus kalian cari, yaitu waktu 1 t1 dan waktu 2 t2. Di dalam rumus percepatan, nilai waktu 2 t2 akan diperkurangkan dengan nilai waktu 1 t1. 3. Membagi Kecepatan dengan Selang Waktu Bentuk rumus percepatan adalah operasi pembagian, di mana nilai dari kecepatan akan dibagi dengan nilai dari selang waktu. Hasil pembagian itulah yang menjadi nilai akhir percepatan a. Contoh Soal Percepatan Nah, sekarang kita akan praktikkan langkah-langkah di atas ke dalam contoh soal percepatan berikut ini Contoh Soal 1 Sebuah balok kayu dilepaskan dari keadaan diam pada sebuah bidang miring. Dalam selang waktu 5 sekon, kecepatan balok menjadi 4 m/s. Tentukanlah percepatan rata-rata yang dialami balok. Jawaban Diketahui v1 = 0 m/s keadaan diam t1 = 0 s t2 = 5 s v2 = 4 m/s Ditanyakan a.....? Penyelesaian a = Δ v/Δ t = v2 - v1/t2 - t1 = 4 - 0/5 - 0 = 4/5 =0,8 m/s2 Contoh Soal 2 Mobil Pak Budi pada detik pertama bergerak dengan kecepatan 5 m/s. Pada detik kedua, kecepatannya menjadi 8 m/s. Berapakah percepatan mobil tersebut? Jawaban Diketahui v1 = 5 m/s t1 = 1 s t2 = 2 s v2 = 8 m/s Ditanyakan a.....? Penyelesaian a = Δ v/Δ t = 8 - 5/2 - 1 = 3/1 = 3 m/s2 Contoh Soal 3 Pak Andi mengendarai sepeda sepanjang lintasan lurus dengan persamaan kecepatan v = 2t + 4 m/s, dengan t dalam sekon. Tentukanlah percepatan rata-rata sepeda dalam selang waktu t1 = 1 sekon dan t2 = 3 sekon. Jawaban Diketahui Untuk t1 = 1 s, maka v1 = 21 + 4 = 6 m/s Untuk t2 = 3 s, maka v2 = 23 + 4 = 10 m/s Ditanyakan a.....? Penyelesaian a = Δ v/Δ t = 10 - 6/3 - 1 = 4 / 2 = 2 m/s2 Contoh Soal 4 Seekor kuda balap berlari dipercepat. Mula-mula diam. Setelah 5 detik kecepatannya menjadi 15 m/s. Hitung berapa percepatan kuda tersebut? Jawaban Diketahui v1 = 0 m/s keadaan diam t1 = 0 s t2 = 5 s v2 = 15 m/s Ditanyakan a.....? Penyelesaian a = Δ v/Δ t = 15 - 0/5 - 0 = 15/5 = 3 m/s2 Contoh Soal 5 Seorang pengemudi mobil mengerem mobilnya yang sedang bergerak dengan kecepatan 30 m/s. Kecepatan mobil berkurang menjadi 10 m/s setelah 5 s. Berapakah percepatan rata-ratanya? Jawaban Diketahui v1 = 30 m/s t1 = 0 s t2 = 5 s v2 = 10 m/s Ditanyakan a.....? Penyelesaian a = Δ v/Δ t = 10 - 30/5 - 0 = - 20/5 = - 4 m/s2 Contoh Soal 6 Seorang pengendara mobil membawa mobilnya dengan kecepatan 10 m/s. Kemudian, ia menginjak pedal gas selama 4 s sehingga mobil meningkat kecepatannya menjadi 18 m/s. Hitunglah a. Percepatan mobil ketika kelajuan mobil bertambah b. Waktu untuk mempercepat mobil sehingga kelajuannya bertambah dari 18 m/s menjadi 34 m/s dengan percepatan pada soal a. Jawaban Diketahui v1 = 10 m/s t1 = 0 s t2 = 4 s v2 = 18 m/s Ditanyakan a.....? Δt pada v1 = 18 m/s dan v2 = 34 m/s Penyelesaian a = Δ v/Δ t = 18 - 10/4 - 0 = 8/4 = 2 m/s2 jawaban pertanyaan a Δt = Δ v/a = 34 - 18/2 = 16/2 = 8 s jawaban pertanyaan b Contoh Soal 7 Sebuah mobil van mulai bergerak dengan percepatan tetap dan kecepatannya meningkat menjadi 20 m/s dalam waktu 5 s. Sopir mobil van terus mempertahankan laju mobil dengan kecepatan ini selama 10 s. Kemudian, ia mengerem dan menurunkan kecepatannya hingga menjadi 12 m/s dalam waktu 4 s. Tentukanlah a. Percepatan rata-rata pada saat 5 s pertama. b. Percepatan antara t1 = 5 s hingga t2 = 15 s c. Percepatan rata-rata pada saat 4 s terakhir Jawaban Diketahui v1 = 10 m/s t1 = 0 s t2 = 4 s v2 = 18 m/s Ditanyakan a.....? Δt pada v1 = 18 m/s dan v2 = 34 m/s Penyelesaian a. Percepatan rata-rata mobil pada 5 s pertama a = Δ v/Δ t = 20 - 0/5 - 0 = 20/5 = 4 m/s2 b. Mobil van bergerak dengan kecepatan tetap antara t = 5 s dan t = 15 s. Percepatan dalam selang waktu ini adalah nol karena tidak ada perubahan kecepatan. c. Percepatan rata-rata pada 4 s terakhir a = Δ v/Δ t = 12 - 20/19 - 15 = -8/4 = - 2 m/s2 Contoh Soal 8 Sebuah motor mula-mula bergerak lurus dengan laju 15 m/s. Pengemudinya kemudian memutar panel gas sehingga motor mendapat percepatan sebesar 1,2 m/s2. Hitunglah kecepatan motor setelah 5 sekon. Jawaban Diketahui v1 = 15 m/s a = 1,2 m/s2 t2 = 5 s t1 = 0 s Ditanyakan v2.....? Penyelesaian a = Δ v/Δ t v2 - v1 = a x Δt v2 = v1 + a x Δt = 15 + 1,2 5-0 = 15 + 6 = 21 m/s Contoh Soal 9 Sebuah motor dipercepat dari keadaan diam dengan percepatan tetap sebesar 6 m/s2. Hitunglah waktu yang dibutuhkan motor agar bisa mencapai kelajuan 48 m/s. Jawaban Diketahui a = 6 m/s2 v1 = 0 m/s v2 = 48 m/s t1 = 0 s Ditanyakan t2.....? Penyelesaian a = Δ v/Δ t t2 - t1 = Δ v/a t2 = t1 + Δ v/a = 0 + 48 - 0/6 = 0 + 8 = 8 s Contoh Soal 10 Sebuah mobil melaju dengan kecepatan 30 m/s. Lalu mobil itu direm hingga berhenti dalam waktu 10 sekon. Hitunglah percepatan mobil tersebut? Jawaban Diketahui v1 = 30 m/s v2 = 0 m/s t1 = 0 s t2 = 10 s Ditanyakan a.....? Penyelesaian a = Δ v/Δ t = 0 - 30/10 - 0 = -30/10 = - 3 m/s2 Contoh Soal 11 Sebuah sepeda motor memiliki kecepatan 20 m/s. Berapa kecepatan akhir motor jika mengalami percepatan 4 m/s2 selama 5 sekon? Jawaban Diketahui v1 = 20 m/s t1 = 0 s t2 = 5 s a = 4 m/s2 Ditanyakan v2.....? Penyelesaian a = Δ v/Δ t v2 - v1 = a x Δt v2 = v1 + a x Δt = 20 + 4 5-0 = 20 + 20 = 40 m/s Contoh Soal 12 Pak Gunawan mengendarai motor sepanjang lintasan lurus dengan persamaan kecepatan v = 2t + 4 m/s, dengan t dalam sekon. Tentukanlah percepatan rata-rata motor dalam selang waktu t1 = 1 sekon dan t2 = 3 sekon. Jawaban Diketahui Untuk t1 = 1 s, maka v1 = 21 + 4 = 6 m/s Untuk t2 = 3 s, maka v2 = 23 + 4 = 10 m/s Ditanyakan a.....? Penyelesaian a = Δ v/Δ t = 10 - 6/3 - 1 = 4 / 2 = 2 m/s2 Gimana adik-adik, udah paham kan materi rumus percepatan di atas? Kalian juga pasti bisa kok menggunakannya. Sekian dulu materi kali ini, bagikan agar teman yang lain bisa membacanya. Terima kasih, semoga bermanfaat. Referensi Yaz, M. Ali. 2007. Fisika 1 SMA Kelas X. Jakarta Yudhistira Young, Hugh D. 2002. Fisika Universitas. Jakarta Erlangga.

sebuah mobil melaju dengan kecepatan